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Abstract -Thepaper offerseffective distributed arithmetic algorithm (DA) method basedmeant for high rate throughput reconfigurable 

implementation of FIR digital filters whose filter coefficients always changesin the course of runtime. Conservatively, for reconfigurable 

Distributed Arithmetic based execution of FIR digital filter, the Look Up Tables are mandatory to be realized in RAM which are 

priceymeant for ASIC execution. As a consequence, a shared LUT scheme is anticipated to apply the DA calculation. The proposed design 
has been worked out on 90nm and 180nm technology, for the ASIC implementation. The area as well as power consumption has been 

decreased whereas the speed has been improved. A 32, 64, 128 tap finite-impulse-response filter with the projectedapplicationyields 2 

times more throughput and consumes almost 5 times less area when equated to the best of existing architectures. 

Keywords -Finite Impulse Response (FIR) filter,Distributed arithmetic (DA) Algorithm, Optimization. 

 

Introduction 

The reconfigurable FIR filters plays a substantial role in several electronics application in today‟s modern world. The 

dynamically changing filter coefficients of these reconfigurable FIR filter during the runtime helps to run the devices 

speedily with high throughput processing abilities. With increase in throughput processing and regularity, there is substantial 

increase in hardware requirement that is multipliers. Which thus affects cost-effectiveness and area-time efficiency of 

computation. Distributed Arithmetic algorithm (DA) is a method which is used all over the world so that one can avoid using 

multipliers to implement sum-of-products computations. It has acquired even more admiration for the large throughput 

capability as well as regularity which has further resulted into area-time efficient and the cost-effective for computation [1]. 

DA is frequently used to form efficiently the Multiply-Accumulate Computation circuit (MAC) for various FIR filters and 

various Digital Signal Processing (DSP) applications. The high computational efficiency is the key benefit of DA [2]. The 

conservative multipliers are not required as DA allocatesmultiplication and accumulation operations through shifters, lookup-

tables (LUT), and the adders. The DA code generation supports for the fixed-point filters designs only [3]. While the data 

path when using HDL coding, produced for the structural design of DA, it is boosted for the full length precision 

calculations, even various algorithms are implicated like LMS, Delayed LMS, Block LMS [4,5]. The taps of the values with 

zero valued coefficients are ignored and size is reduced of the DA-based LUT consequently, which could have increased 

exponentially with length L+1 for fundamental DA [6]. 

Distributed Arithmetic 

In DA-based realization of a FIR finite impulse response filter, a stream of data input is given over a parallel-serial shift-

register which produces a sequential bits. This data is further fed to bit-wide shift-register which aids as a delay, loading the 

bit serial data sequences. The delay-line is tapped to form the address which directories into a lookup-table (LUT) [7]. The 

look-up (LUT) saves the partial products sums over the filter coefficients space. A shift and adder follow the LUT. This logic 

sequentially do the addition of the values obtained from look-up table (LUT). A lookup table is performed sequentially for 

each and every bit and on all clock cycle, LUT outcome is added to the shifted and accumulated result from the previous 

cycle [8]. 

This is the simple form of Distributed Arithmetic which is serial in nature, functioning one bit at a time only. The filter clock 

cycle number to generate the output relays upon the bitwise length of input stream data. If data input stream is X bits in 

length, then the FIR Filter takes in sequence X clock cycles to calculate the output. FIR Filters having the Symmetric and 

asymmetric structures are exceptional cases, as it requires X+1 clock cycles, one extra clock cycle is essential to route carry 

bit of pre-adders [9]. 

The fundamentally bit serial environment of DA limits the throughput. In a way to improve throughput, the simple DA 

algorithm is modified and it computes additional one bitwise sum at a time. The amount of instantaneously calculated bit 
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wise sums is stated as a twos power termed the Distributed Arithmetic radix. As an example, a DA-based radix of 8(2^3) 

designates that a three bit wise sum is calculated at the similar time, and carry forwarded, for examples one dimensional and 

two dimensional array structures [10]. To compute additional one bit wise sum at the equivalent time, the coder replicates the 

lookup tables. The DA to perform on two bits consequently (radix 4), the bits which are odd are given to LUT and the bits 

which are even are at the equivalent time fed to an alike LUT. The LUT results of bits which are odd are left-shifted 

beforehand to sum up to the lookup table results of bits which are even. This output is further fed to an accumulator which 

shifts the feedback data by two places. Handling additional one bit at same time acquaint with parallelism into the action, 

which improves the performance [11]. 

 

The size of lookup table grows with increasing filter order. For the high-order filters, size of lookup table (LUT) is decreased 

to considerable amount. In order to decrease the size, the LUT is split up into several LUTs, known as LUT partitions or the 

slices [12]. These each of the lookup table partition functions on a diverse taps set and the output result acquired through the 

partitions are added. 

 

For the linear time-invariant networks the sum-of-products states the output response as: 

 

y(n)= Aii=1
i x𝑖  (n)                 (1) 

 

where: 

y(n) is the network-response at a time „n‟, 

𝑥𝑖(𝑛) is the ith input at a time „n‟, 

𝐴𝑖  is the weight factor of ith input-variable which remains time-invariant [13,14]. 

 

In the applications where filter is used the constants, Ai , are the coefficients of filter, while xi , are variables which are 

previous sample of data from the source. The severe multiplication nature of above equation 1 is valued by observing that an 

output response of single data requires accretion of product terms. While in Distributed Arithmetic the process of addition of 

the product terms is carried through look-up tables which is implemented in configurable logic blocks [15]. 

The constant factors, Ai, are not constrained they don‟t even requires to be matched with the data word length, on the 

additional hand the constants might be having a mixed integer or even fractional set-up. The variable, xi, can be written in 

fractional form as: 

 

xi  = −xi0 + xibb=1
B−1 2−b(2) 

 

Where, 

xib  is binary variable and takes the value of 0 or 1. 

A xi0 indicates signed value of -1. Substituting equation (2) into equation (1) the result obtained is- 

 

y = Aii=1
I  [−xi0 +  xib  b=1

B−1 2−b] / Ai2
−b  

 

y =  xi0i=1
I Ai  + xibi=1 b=1

I(B−1)
(3) 

 

The word in the square bracket indicates a multiplying operation including a bit of input variable as well as all other bits of 

constant. The „+‟ sign signify summation. Scaled contributions of square bracket pairs to total sum is signified by exponential 

factors [16]. Distributed Arithmetic FIR filter computes the filter action in H clock cycles irrespective of the filter tap size, K. 

So, the large throughput rate is acquired using the Distributed Arithmetic execution, especially if K >> B, where K is tap of 

filter. If the filter tap increases the memory need increases exponentially, at the rate of  2𝐾 [18]. 

 

The same Distributed Arithmetic Table (DA-LUT) may be shared in time form in series computation or may be imitated 

several intervals for parallel calculation pattern. If consecutive summation of all the DA-LUTs outcomes is essential then the 

array of parallel-adders is required. While the multiple parallel addition operation of DA-LUT outputs given as in equation 

(4) is only performed with help of single adder that also if the adder is time-shared [17]. 

Henceforth the DA lookup table or DALUT is shown as: 
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Figure 1.Look-up Table of Distributed Arithmetic [3] 

 

As presented in figure 2, the structure depicts the input data samples x are given to the serial-in-parallel-out shift register at 

every instant of clock cycle. The size of this serial-in-parallel-out shift register is supposed to be N, it thus decomposes N 

newest samples to P which is of interval M, where p = 0, 1,2,3,4,…….…., P-1. This is then fed to reconfigurable partial pro-

generators which computes the partial products. These computed partial products is added through pipeline adder tree and 

further shifted as well as added to get the final outcome y [18]. 

 
 

 
 

Figure 2. Reconfigurable FIR Filter ASIC Design using DA [1]. 

 

The reconfigurable partial pro generator blocks consists of parallel LUTs to implement the FIR filter. The LUTs are shared 

through L bit slices as well as array register is preferred over memory based LUT so that they can be accessed 

simultaneously, thus they can be updated in less cycles [19]. The inputs of MUX as shown figure 3 are given as 0, h(2p), 
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h(2p+1) and h(2p) + h(2p+1), while 2-bit digit bi, is given to MUX l for 0 ≤ l ≤ L-1 as the control word. This MUX then 

gives the partial product Si, for 0 ≤ l ≤ L-1. 

 
 

Figure3.Reconfigurable partial product generator (RPPG) block [1]. 

 

Hence, partial product generator is decomposed into U parallel slices as well as each slice has its own V time multiplexed 

functions [20, 21, 22]. Where L is given by L = UV, U and V being positive integers. 

Proposed DA Based Filter 

The anticipatedconfiguration of the Distributed Arithmetic constituted FIR digital filter meant for ASIC application is as 

depicted in Fig. 2. The ingoingtasters {x(n)} arriving at each sampling instant are provided  to a serial-in–parallel-out shift 

register having size N. The SIPOSR crumbles the N latest most samples to P vectors bp of length M for p = 

0,1,2,3,4,……....,P−1 and provides these to P reconfigurable partial product generators to analyze the partial products 

conferring to [23, 24]. The arrangement of the projected RPPG is depicted in Fig. 3 for M = 2. For high-throughput 

execution, the RPPG generates L partial products conforming to L bit slices in parallel by using the LUT poised of a very 

single register bank of 2M − 1 registers and L number of 2M : 1 MUXes [25]. 

 

 
Figure 4.Proposed structure for FIR filter based on DA scheme 
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In the projectedassembly, the reduced storingingestionby means of involving each and every Look up table across L bit slices 

is given. The register array is being chosen for this veryperseverance rather than memory-based look up table so that to 

access the look up table contents at once. In addition, the contents in the register-based look up table is able to be update in 

parallel in lesser cycles than the memory-based look up table to executeanticipated FIR digital filter [26, 27, 28]. The width 

of each and every register with the look up table is  bits, where W is the word-length of the filter coefficient. 

The input of the MUXes are 0, h(2p), h(2p + 1), and h(2p) + h(2p + 1); and the two-bit digit bl,p is fed to MUX l for 0 ≤ l ≤ L 

− 1 as a control word. We can find that MUX l provides the partial product Sl,p for 0 ≤ l ≤ L − 1 given by [24]. 

Results And Discussions 

The projected structure is shown for ASIC implementation assures a very high throughput compared to the other structures 

for R < L as well few adders and small LUT that to the systolic structure. The structure presented involves lesser adders as 

well as registers, but slightly larger look up table, compared tovery other structure. However, on behalf ofASICexecution, the 

DRAM-based look up tableneeds fewquantity of slices (QOS) as compared to the register-based look up table of the identical 

size. It have to be illustrious that, as M increases, the size of the look up table increases exponentially, however the total 

number of adders declines. The silicon areas of the assemblies in Fig.5 are proportional to the value of P, and the filters will 

have much benefit due to more partaking of the LUT when L has a huge value. 
 

 

TABLE 1 :Performance Comparison For L=W =32, M =64 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Area Comparison for 90 and 180nm technology 

 
 

 

Parameter 90nm 180nm 

Filter 

Length 
32 64 32 64 

Area 

(sq.um) 
12756 13563 12418 13225 

Power 

(nW) 
11.33 15.71 15.51 23.52 

Speed (ns) 1.202 1.1995 1.2008 1.1994 
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Figure 6.Power Comparison for 90 and 180nm technology 

 

Conclusion 

In this brief, an effectual structureaimed at high-throughput reconfigurable Distributed Arithmetic based ASICapplication of 

FIR digital filtersis presented. It has predicted that the structure hardware cost possibly will be concentrated by partaking the 

similar registers by the Distributed Arithmetic Algorithm units for various bit slices. The projectedplan has almostless area 

along with power consumption for the ASIC implementation. The design will able to be adopted to any order filters and is 

predominantlybeneficial for filters of higher order as well as large base units. The percentage improvement in speed is 2 

times, while power consumption is 5.4 times less and even area is decreased. 
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